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Abstract. The type-I quantum superalgebras are known ta admit non-trivial one-parameter 
families of inequivalent finite dimensional irreps, even for generic q.  We apply the recently 
developed technique to construct new solutions to the quantum Yang-Baxter equation associated 
with the one-parameter family of imps of U&(mln)), thus obtaining R-matrices that depend 
not only on a specaal parameter but in addition on further continuous, parameters. These extra 
parameters enter the Yang-Baxter equation in a similar way to the spectral parameter but in a 
non-additive form. 

In [I], we developed a systematic method for constructing R-matrices (solutions of the 
quantum Yang-Baxter equation (QYBE)) associated with the multiplicity-free tensor product 
of my  two affinizable irreps of a quantum algebra. This approach was applied and extended 
to quantum superalgebras in [Z,3]. For the type-r quantum superalgebra U,(gZ(mll)) in 
particular, we were able to obtain R-matrices,depending continuously on extra parameters, 
entering in a similar way to the spectral parameter but in a non-additive form. In this paper, 
we continue this study to construct new R-matrices for the type-I quantum superalgebra 
U,(gl(mln)) for any m 2 n. 

The freedom of having extra continuous parameters ,in R-matrices opens up new and 
exciting possibilities. For example, in [4], by using the R-matrix associated with the one- 
parameter family of four-dimensional irreps of U,,(gl(Z{l)), we derived a new exactly 
solvable lattice model of strongly correlated ele&ons on the unrestricted 4L-dimensional 
electronic Hilbert space (where L is the lattice length), which i s - a  gZ(211) 
supersymmetric generalization of the Hubbard model with the Hubbard on-site'interaction 
coupling coefficient related to the parameter carried by the four-dimensional irrep. 

The origin of the extra parameters in our solutions are the parameters which are carried 
by the irreps themselves of the associated quantum supedgebra. As is well known [SI, type- 
I superalgebras admit non-trivial one-parameter families of finite-dimensional irreps which 
deform to provide one-parameter families of finite-dimensional irreps of the corresponding 
type-I quantum superalgebras, for generic q [6]. Note, however, that for quantum simple 
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bosonic Lie algebras families of finite-dimensional representations are possible only when 
the deformation parameter q is a root of unity. Therefore our solutions are not related to 
the chiral Potts model R-matrices which arise from quantum bosonic algebras for q a root 
of unity only [7,8]. 

Let us give a brief review of our general formalism formulated in [2, 31. Let G denote a 
simple Lie superalgebra of rank r with generators {e;. 5 ,  hi }  and let 01; be its simple roots. 
Then the quantum superalgebra U,(G) can be defined with the structure of a &-graded 
quasi-triangular Hopf algebra. We will not give the full defining relations of U,,(G) here, 
but simply mention that U,(G) has a coproduct structure given by 

(1) A(q ' ) -4 
The multiplication rule for the tensor product is defined for elements a, 6 ,  c, d E U,,(G) by 
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h.12 - hi12 @ q h d 2  A ( ~ )  = a @ q-h;/2 + qhd2 a = fi, 

( a @ b ) ( c @ d )  = (-l)'bl["(ac@bd) (2) 
where [a] E ZZ denotes the degree of the element U .  

Let n, be a one-parameter family of irreps of U,(G) afforded by the irreducible module 
V(A,) in such a way that the highest weight of the irrep depends on the parameter 01. 

Assume for any 01 that the irrep xu is affinizable, i.j. it can be extended to an irrep of 
the corresponding quantum affine superalgebra U,(G). Consider an operator (R-matrix) 
R ( x [ a , p )  E End(V(A,) @ V(A,& where x E C! is the usual spectral parameter and 
zol, xP are two irreps from the o n e - p h e t e r  family. It has been shown by Jimbo 191 that 
a solution to the linear equations 

R ( x [ a ,  p )A@(a)  = i@(a)R(xlru, p )  V a E U,(G) 
R(xl01, B )  (xndeo) @ q(4-h0/z2) + x,(q"'lz) @ q ( e d )  (3) 

= (xrr,(eo) z,dqh0/2) +~ , (q -hO'z )  €3 n,&o)) R(xlO1, p )  
satisfies the QYBE in the tensor product module V(A,) @ V(A/) €3 V(h,) of three irreps 
from the one-parameter family 

Riz(xIO1, B ) R I ~ ( x Y I o ~ .  Y)Ru(YIB, Y) = Rzs(~lB, Y)RI~@YIO~,  y)Rrz(xlU, B. (4) 

In the above, = T.A.  with T the twist map defined by T(a@b) = (-l)['l[%@a, V a ,  & E 
U,(G) and A@(a)  = (ne @ ?rp)A(~); also, if R(xl01, 8) = xi &(ai) @ z&), then 
Rlz(xl01, p )  = Ci rr&) @ np(bi) @ I, etc. limbo also showed that the solution to (3) is 
unique, up to scalar functions. The multiplicative spectral parameter x can be transformed 
into an additive spectral parameter U by x = exp(u). 

In all our equations we implicitly use the 'graded' multiplication rule of (2). Thus the 
R-matrix of a quantum superalgebra satisfies a 'graded' QYBE which, when written as an 
ordinary matrix equation, contains extra signs: 

(R(xl01, B));;" ( R ( x y [ a ,  y ) ) : y  (R(y lp ,  y));,'F ( - l ) [ '  ~ll~lt~klLi'ltIk'll~'l ' 

(5) i'k'' (jqxl,,., p)f"j" (-1)ljl[klt[k'lIiltv'11i'l, = (R(YlS. Y ) ) j Y  (R(xylO1. V))iW I ' j .  

However, after a redefinition 
i'7 

(ri'(+Y,p))., V = (R(. la,p))y (-1)['1[" (6) 

the signs disappear from the equation. Thus any solution of the 'graded' QYBE arising from 
the R-mamx of a quantum superalgebra provides also a solution of the standard QYBE after 
the redefinition in (6). 
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Introduce the graded permutation operator Pap on the tensor product module V(A,)  @ 
V(h#)  such that 

U8 @ v E V ( A d  Up E V(&) (7) P as (U, @ up)  = (--l)[al[s] 

Then (3) can be rewitten as 

 la, p)Aa’(a) = Apc(a)&xla, p )  V a E U,(G) 
 XI^, B )  ( k ( e o )  B zp(q+/’) + n,(qhO/’) 8 np(eo)) (9) 

= (zp(eo) @ ~ ( q - ’ 0 / ’ )  + x q ( q 9  @ n,(eo)) &XI., B )  
and in terms of i ( x l a ,  p) the QYBE becomes 

(1 @ &xia, m d ( x ~ i a ,  Y )  @ r ) (r  8 &YIP, V I )  

= (&YIP, Y )  @ r ) (z  @ d w a ,  Y))(&xI~. 6) GI r )  (10) 
both sides of whichact from V(A, )@V(Ap)@V(A, )  t o~V(A, )@V(Ag)BV(A, ) .  Note 
that this equation, if written in matrix form, does not have extra signs. This is because the 
definition of the graded permutation operator in (7) includes the signs of (6). In what follows 
we will normalize the R-matrix fi(xla.j3) in such a way that ~ ( x l a , p ) & x - ’ I p , a )  = I ,  
which in the literature is usually called the unitarity condition. 

For three special values of x :  x = 0, x = 00 and x = 1, @.la,,4) satisfies the 
spectral-free, but extra non-additive-parameter-dependent QYBE: 

In the case of a multiplicity-free tensor product-decomposition 

where p denotes a highest weight depending on the parameters a and p ,  the 
k(Ola, p) ,  j?(cola, p )  and k(lla, ,9) may be obtained in the particularly simple form [l-31 
for quantum bosonic algebras obtained in [ I O ,  1 I]: 

k(ola, p )  = qilC(~)-C(A&C(4dI p@ P (13) 
P 

where C~(A) = (A, A + 2p)  is the eigenvalue of the quadratic Casimir invariant of G 
in the irrep with highest weight A, ,& is the graded half-sum of positive roots of G ~ a n d  
P;@ : V(A, )  @ V(Ap) + V ( p )  C V(Ap)  @ V(A,)  are the elementary intertwiners, i.e. 
PP ‘pA@(a) = Ap”(a)P;”, E ( @ )  is the parity of V ( p )  in V(A,)  B V(Afi) .  Since in the 
present case a, etc, are continuous parameters, the parities ~ ( p )  can easily be worked out 
by examining the limit a + p .  
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The elementary intertwiners satisfy the relations 

where the P$ : V(A,) 63 V(Afi) -+ V ( p )  c V(A,) @ V(A8) are projection operators 
satisfying 

P 

Let {lef).efi) be an orthonormal basis for V ( p )  in V(Ac)@ V(A6). V ( p )  is also embedded 
in V(Ap)  @ V ( A d  through the opposite coproduct i. Let ( ler)B@u) be the corresponding 
orthonormal basis?. Using these bases the operators P;p and P;fi can be expressed as 

The most general &x[a, p )  satisfying the first equation in (9) may be written in the 
form 

where the pP(x)  are unknown functions depending on x ,  q and the extra non-additive 
parameters (Y and p .  It follows [l-31 from the second equation of (9) that if 

(20) PEP (xa(eo) B ~ p ( q - ~ 0 ’ ~ ) )  P;! + o 
then the cmfficients p,(x) in (19) are given recursively by 

e(p)e(p’) = -1 always holds if (20) is satisfied. With the help of the notation 
1 -xq“  

(a) z? - 
x -40 

equation (21) then becomes 

We have a relation between the coefficients pP and ppt whenever the condition (20) is 
satisfied, i.e. whenever &(eo) @ xp(q-’@) maps from the module V(p‘) to the module 
V(fi) .  As a gaphical aid [I21 we introduce the tensor product graph. 

Definition 1. The tensorproduct graph (TPG) associated with the tensor product V(h , )  @ 
V(&) is a graph whose vertices are the irreducible modules V ( p )  appearing in the 
decomposition of V(A,) 63 V(Ap).  There is an edge between a vertex V ( p )  and a vertex 
V($) iff 

(n,(eo) @ ~ B ( q - ~ o / ~ ) )  P:! # 0. (W 
t For the precise definition of &is basis see appendix C of [I] 
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If V(A,) and V ( A p )  are irreducible U,(G) modules then the TPG is always connected, 
i.e. every node is linked to every other node by a path of edges. This implies that 
relations (23) are sufficient to determine all the coefficients p,[x) uniquely, up to an overall 
factor. If the TPG is multiply connected, i.e. if there exist more than two paths between two 
nodes, then the relations overdetermine the coefficients, i.e. there are consistency conditions. 
However, because the existence of a solution to the Jimbo equations is guaranteed by the 
existence of the universal R-matrix, these consistency conditions will always be satisfied. 

The straightforward but tedious and impractical way to determine the TPG is to work 
out explicitly the left-hand side of (24). It is much more practical to work instead with the 
following larger graph which is often enough to determine the coefficients p,(x). 

Defnzition 2. The extended tensor product graph (fim) associated with the tensor product 
V(A,) @ V(Ap) is a graph whose vertices are the irreducible modules V ( p )  appearing in 
the decomposition of V(&) @ V ( A p ) .  There is an edge between two vertices V ( p )  and 

iff 
V(p') c vadj @ V(w)  and c(pL)+') = - 1 .  (25)  

The condition in (25) is a necessary condition for (24) 1121. This means that every link 
contained in the TPG is contained also in the ETPG but the latter may contain more links. 
Only if the ETPG is a tree do we know that it is equal to the TPG. If we impose a relation 
(U) on the p's for every link in the ETPG, we may be imposing too many relations and thus 
may not always find a solution. If, however, we do find a solution, then this is the unique 
correct solution which we would also have obtained from the TPG. 

We now apply the above formalism to the one-parameter family of irreps of U,(gl(mln)), 
all irreps of which are known to be affinizable. 

Choose (&i}k1 u(Ej)~==, as a basis for the dual of the Cartan subalgebra of gl(mln) 
satisfying 

(&j, E j )  = si/ (5i, Z j )  = -sij ( E i ,  Z j )  = 0 .  (26) 
Using this basis, any weight A may written as 

and the graded half sum p of the positive roots of gl(mln) is 

We assume m 2 n and for 0 < k < mn we call , a  Young diagram [A] = 
IAz,Az....,Arl, AI > A z . . . > A r  2 OforthepermutationgroupSk(i.e.AI+A~+ ...+ A, = 
k) allowable, if it has at most n columns and m rows; i.e. r < m, Ai 4 n. Associated with 
each such Young diagram [A] we define a weight of gl(m1n) 

A ~ A ~ = ( O  ,_,,- A,,...,-A,lr ... r r - 1  ... r - I , . .  ., 1 . . . . , 1 , 0 , .  .. 0)  (29) -U -+ 
A, A,-( -A< At--)12 n-At 

In what follows we will consider the one-parameter family of finite-dimensional irreducible 
U,(gl(mln)) modules V&) with highest weights of the form A. = (0,. . . , Olp, . . .,a) 
(Olk). These irreps V(A,) are unitary of type I if 01 > n - 1 and unitary of type II if 
01 < 1 -m. Here we assume real 01 satisfying one of these conditions, in which case V(A,) 
is also typically of dimension 2"". 
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We have the following decomposition of V(h,) into irreps of the even subalgebra 
g W  EBgKn): 

where the prime denotes summation over allowed k-box Young diagrams. Note that the 
index k gives the %graded level of the i m p  concerned. Alternatively we may simply write 

The number of boxes then gives the level. For ha, hg of the same type, we immediately 
deduce the tensor product decomposition 

The eigenvalue of the second order Casimu on the irrep V ( h [ ~ l +  &+p) can be shown to 
be 

r 

C ( [ A ] ) = 2 ~ A . i ( A ; + l  - a - , 9 - 2 i ) - n ( a + , 9 ) ( a + @ + m ) .  (33) 
id 

Below we show that the ETPG corresponding to the above tensor product is always consistent 
and we derive an explicit expression for the eigenvalues p[ .q(x)  for the R-matrix &la, B )  
of U,(gl(mln)). It is instructive to first consider some examples. 

Example I :  Uq(gl(mM)J. 

V(Aa)@ V(Ap)= V ( A m + ~ ) e V ( 0 , - 1 l ~ + B f  l ) e V ( O , - l , - l I a + , 9 + 2 )  

In this case we have the tensor product decomposition 

e.. . e v(-iia + p + m) . 
In terms of Young diagrams the ETPG is - * - - - _ - - -  ---.----. 

0 E 8. 
m - 1  : :  

U 

El 
I I  
U 
I ,  

(34) 

which is obviously consistent. 

Example 2: U,(gl(2)2J). The tensor product decomposition is 

V(&) 8 V ( h 8 )  = V ( L + g )  e V(0, -1la +,8 + 1, LY + B )  
@V(-l, -1lru+,9+2,a+,8) e V(0, -21a+B + 1,a+,8+ 1 )  

@V(-l. -210 + ,8 + 2.01 + ,9 + 1) e V(-2. -2la + B + 2, a + /9 + 2) .  
(35) 

The ETPG in terms of Young diagrams is shown in figure l(u). From equation (33) for 
C([A]) it can easily be deduced that 

(36) c(@ - c (1) = ~ ( d  - c (0) = - 2 ( a + ~  -2)  
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t 

(a) 
(b) 

Figure 1. The m s  for V(A,) @ V(A8) in (a)  Uq(g1(212)) and ( b )  Uq(g1(312)). 

so that this diagram is consistent. For completeness we note that 

C ( . )  = -Z(a + B)(a + B + 2) c (0) = -Z(a + p )  + C(.) 
c (d = -4(a + /3 - 1) + C(.) c (e> = -4(a + B + 1) + C(.) 

c (@ = -8(a + 6) + C(.). 

(37) 

C(@ =-6(a+B)+C( . )  

E m p f e  3: C/,,(g1(3[2)). The ETPG is given in figure l(6). In this case equation (33) gives 

c (@ -c (a) = c(n j  -c(cI) = -2(a+B -2) 

So again all closed loops are consistent, leading to a consistent graph. 

Now we retum to the general case U,,(gl(mln)). Corresponding to the tensor product 
decomposition (32), we note that given an (allowable) Young diagram [A], the number of 
boxes in [A] gives the level of the irrep V([A] + A,+@) in the ETPG. We denote by [A + A,] 
the Young diagram obtained from [A] by increasing row r by one box leaving the remaining 
rows unchanged. 

Therefore in general we necessarily have closed loops of the form 

Ill 
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and note that 

C([A f A,]) - C([Al) = 2(A, f I)@, + 2 - IY - 6 - 2 r )  - 2A,(A, + 1 - 01 - @ - 2) 

G W Delius et nl 

= 2(& + 2-  a - p - 2 r ) .  (40) 
The important point, which is easily seen, is that (for r + k)  

C([A + AT + AA) - C([Al) = (C(IA + 4 1 )  - C([Y)) + (C([h + An]) - C([Al)) . 
Thus 

(41) 

+ A, + Awl) - C(EA + Ad) = C(tA + A,) - C([Al) (42) 
so that all such closed loops are consistent. This shows that all the ETPGS are consistent. 

With the help of the Young diagram notation we now recast (19) in the form 

where the prime signifies the summation over allowed Young diagrams, as in the tensor 
product decomposition (32). Since the ETPG is consistent we may calculate the coefficients 
ppl(x) by succesive removal of boxes, starting with the last column and proceeding to 
eliminate column by column. By this means we arrive at 

r AI 

p]A] I (X)  = n n(2k - 01 - B - 21) Dl D l  7 A2r . ' ' (44) 
I d  k=I 

where we have chosen the normalization p.(x) = 1 (corresponding to the highest vertex 
A\.+#) and the notation (a )  is as in (22). , 
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